
HTRC Data API Users Guide
Version Status Maturity Comments

3.0.0 Released Stable CQL-based access instead of Hector-based
access

1.0 Released Released

1.0.1-SNAPSHOT Under testing Release candidate Added token count feature

Table of Contents

1 Synopsis
2 Use:
3 API

3.1 Retrieve Volumes
3.2 Retrieve Pages
3.3 Token Count (Deprecated)

4 Response Format
4.1 Zip Structure Layout
4.2 Token Count Output Format and Sorting Order (Deprecated)

5 Access Data API with JWT

Synopsis
The HTRC Data API is a RESTful web service for the retrieval of multiple volumes, pages of volumes, and METS metadata documents. In order to
support the efficient retrieval of volumes and pages in bulk, the Data API deviates from the typical RESTful API design out of necessity: Resources are not
identified on the URL paths, but instead are sent as request parameters.

Use:

The HTRC Data API pulls full text OCR and METS metadata for specified volumes into the HTRC Data Capsules. You can download the full text of
specified volumes using the HTRC Data API, with the volumeIDs of the desired volumes passed as parameters to the APIl. Volume IDs are standard
identification numbers for items in the HathiTrust Digital Library. Currently, the HTRC Data API can only access a snapshot of public domain volumes.

API
Note: all parameter values must be URL encoded

Retrieve Volumes

Description Returns requested volumes

URL /volumes

Supported
Response Types

application/zip (normal response)

text/plain (error response)

Method POST

Request Types application/x-www-form-urlencoded

Request
Headers

`Authorization: Bearer [JWT_TOKEN]` (replacing `[JWT_TOKEN]` with the valid token)

Request Body Request parameters as body content. See Parameters below

Parameters Name Description Type Default
value

Required Note

volumeIDs The list of volumeIDs to be retrieved. string N/A yes VolumeIDs are separated by the pipe character ' '|

concat The flag to indicate concatenation option. boolean false no See section on response format for details on its impact
on the returned data

mets The flag to indicate if METS document should
be returned

boolean false no

version A specific version of the Data API to use string N/A no Not implemented. Place holder only

Responses HTTP
Status
Code

Response Body Response
Type

Description

200 (ok) A binary Zip stream application
/zip

Page content and metadata of the requested volumes aggregated as a Zip
stream

400 (bad
request)

Missing required parameter
volumeIDs

text/plain The required parameter volumeIDs is missing in the request

400 (bad
request)

Malformed Volume ID List.
Offending token: ${token}

text/plain The value for volumeIDs is malformed and the Data API cannot parse it. ${to
will be the token that causes the error.ken}

Example Description Request for volumes and , with concatenation option enabled so inu.3011012 uc2.ark:/13960/t2qxv15
each volume is a single text file in the returned Zip stream.

Raw volumeIDs inu.3011012|uc2.ark:/13960/t2qxv15

URL encoded
request body

truevolumeIDs=inu.3011012 uc2.ark%3A%2F13960%2Ft2qxv15%7C &concat=

Example Request

curl -v -X POST -o volumes.zip \
 -d "volumeIDs=uc2.ark%3A%2F13960%2Ft12n5fs57" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -H "Authorization: Bearer TOKEN" \
 https://sandbox.htrc.illinois.edu:25443/data-api/volumes

Note: The placeholder in the example request needs to have a valid value.TOKEN

Retrieve Pages

Description Returns requested pages

URL /pages

Supported
Response
Types

application/zip (normal response)

text/plain (error response)

Method POST

Request
Types

application/x-www-form-urlencoded

Request
Headers

Content-Type: application/x-www-form-urlencoded

Request
Body

Request parameters as body content. See Parameters below

Parameters Name Description Type Default
value

Required Note

pageIDs The list of pageIDs to be retrieved string N/A yes PageIDs are separated by the pipe character ' '|

concat The flag to indicate concatenation option boolean false no See section on response format for details on its impact on
the returned data

mets The flag to indicate if METS documents should
be returned

boolean false no

version A specific version of the Data API to use string N/A no Not implemented. Place holder only

Responses HTTP
Status
Code

Response Body Response
Type

Description

200 (ok) A binary Zip stream application
/zip

Page content and metadata of the requested pages aggregated as a Zip stream

400 (bad
request)

Missing required parameter
pageIDs

text/plain The required parameter pageIDs is missing in the request

400 (bad
request)

Malformed Page ID List.
Offending token: ${token}

text/plain The value for pageIDs is malformed and the Data API cannot parse it. will be ${token}
the token that caused the error.

400 (bad
request)

Conflicting parameters in page
retrieval. Offending
Parameters: ${param1}, ${param2}

text/plain Some request parameters have conflict. and will be the names ${param1} ${param2}
of the parameters that caused the conflict. In the current version of the Data API, this is
most likely caused by setting both "mets" and "concat" for page retrieval.

Example Description Request for the 1st, 2nd, 20th, and 30th pages of the volume , and the 11th, 17th, 22th, 30th, 45th, and 55th inu.3011012
pages of the volume , with each page being a separate text file along with the corresponding uc2.ark:/13960/t2qxv15
METS document of each volume in the returned Zip stream.

Raw
pageIDs

inu.3011012 1 2 20 30 uc2.ark:/13960/t2qxv15 11 45 30 17 22 55[, , ,]| [, , , , ,]

URL
encoded
request
body

pageIDs=inu.3011012 1 2 20 30 uc2.ark%3A%2F13960%2Ft2qxv15 11 45 30 17%5B %2C %2C %2C %5D%7C %5B %2C %2C %2C %2C
& true22 55%2C %5D mets=

Token Count (Deprecated)

Description Returns token counts of requested volumes

URL /tokencount

Supported
Response
Types

 (normal response)application/zip

 (error response)text/plain

Method POST

Request
Types

application/x-www-form-urlencoded

Request
Headers

Content-Type: application/x-www-form-urlencoded

Request
Body

Request parameters as body content. See Parameters below

"concat" and "mets" cannot be both set

"concat" and "mets" cannot be both set

Parameters Name Description Type Default
Value

Required Note

volumeIDs the list of volumes to be token counted string N/A yes VolumeIDs are separated by the pipe character ' '|

level specifies whether the token counts to be aggregated at volume level or page
level. Use " " for volume level, and " " for page levelvolume page

string volume no

sortBy specifies the token count output to be sorted on a fields. Use " " for sorting token
based on the token's UTF-8 order, and " " for sorting based on the token count
count order. If left unspecified, the results do not guarantee any orders.

string N/A no Token ordering is based on UTF-8 character
values, so character " " comes before character "Z a
" (if using ascending ordering). For token count
ordering, tokens with the same count are ordered
by token's UTF-8 values.

sortOrder specifies whether output to use ascending or descending ordering. Use " " asc
for ascending ordering, and " " for descending ordering.desc

string asc no this parameter only has effect when used together
with , otherwise it is ignored.sortBy

version A specific version of the Data API to use string N/A no Not implemented. Place holder only

Responses HTTP
Status Code

Response Body Response
Type

Description

200 (ok) a binary Zip Stream application
/zip

Token count output aggregated as a Zip stream

400 (bad request) Missing required parameter volumeIDs text/plain The required parameter volumeIDs is missing in the request

400 (bad request) Malformed Volume ID List. Offending
token: ${token}

text/plain The value for volumeIDs is malformed and the Data API cannot parse it. will be the ${token}
token that caused the error.

Example Description Request for page level token count of the volumes and , with the token count output to be inu.3011012 uc2.ark:/13960/t2qxv15
sorted by the tokens in descending order

Raw volumeIDs inu.3011012|uc2.ark:/13960/t2qxv15

URL encoded
request body

page token descvolumeIDs=inu.3011012%7Cuc2.ark%3A%2F13960%2Ft2qxv15&level= &sortBy= &sortOrder=

Response Format

Zip Structure Layout

The directory structure layout of the Zip stream returned from the Data API may be one of the following patterns depending on the optional parameters:

Suppose there are 2 hypothetical volumes in the corpus: , which has 5 pages, and , which has 3 pages. Both foo.001122 bar.ark:/13960/t123
volumes also have the associated METS xml files. The client tries to request for these 2 volumes, and also tries to request for another volume gon.

 that no longer exists in the corpus, which would cause the entry to be included in the returned Zip strea.000000 ERROR.err

Request
Description

Zip
Structure
Layout

Explanation of Entries

Strictly speaking, inside a Zip file the structure is flat, so there is no "directories" but only file entries. However, in practice almost all Zip tools
give the illusion of directories by leveraging the slash characters '/' in the name of each Zip entry. For the discussion here, we follow such
practice and treat the inside of a Zip file as if it were a conventional filesystem.

Retrieve
volumes

concat=fal
se

volumes.zip

 |-- foo.
001122/

 | |--
00000001.txt

 | |--
00000002.txt

 | |--
00000003.txt

 | |--
00000004.txt

 | |--
00000005.txt

 | \--
mets.xml

 |-- bar.
ark+=13960=t
123/

 | |--
00000001.txt

 | |--
00000002.txt

 | |--
00000003.txt

 | \--
mets.xml

 |--
volume-
rights.txt

 \--
ERROR.err

Because the request parameter , each volume has its own directory, and the pages and metadata concat=false
documents of each volume are individual files stored under the volume directory.

foo.001122/ is a directory named after the first volume, . The directory name underwent a foo.001122 Pairtree
clean process, but since it does not contain any filesystem unsafe characters, the cleaned ID looks the same as the
original.

Inside , files through are the 5 pages of this volume foo.001122/ 00000001.txt 00000005.txt

mets.xml will also be inside of if the request parameter foo.001122/ mets=true

bar.ark+=13960=t123/ is a directory named after the second volume, . The directory bar.ark:/13960/t123
name underwent a clean process so that filesystem-unsafe characters such as colons ' ' and slashes ' ' Pairtree : /
are escaped and replaced with filesystem-safe characters.

Inside , files through are the 3 pages of this volume.bar.ark+=13960=t123/ 00000001.txt 00000003.txt

mets.xml will also be inside of if the request parameter bar.ark+=13960=t123/ mets=true

volume-rights.txt is a file at the top level. It contains the for each volume. HTRC Data Protection Level

ERROR.err is a file at the top level. It is present if the request encountered some errors and the detailed error
information is stored in this file. In this example, its presence is caused by the request for a non-existent volume
gon.000000

Retrieve
volumes

concat=true

volumes.zip

 |-- foo.
001122.txt

 |-- foo.
001122.mets.
xml

 |-- bar.
ark+=13960=t
123.txt

 |-- bar.
ark+=13960=t
123.mets.xml

 |--
volume-
rights.txt

 \--
ERROR.err

Because the request parameter , each volume is a single text file, where the pages of the volume are concat=true
concatenated into the file in the page order.

foo.001122.txt is the text file entry for the volume . The filename underwent a Pairtree clean foo.001122
process, but since it does not contain any filesystem unsafe characters, the cleaned ID looks identical to the original.

foo.001122.mets.xml will be present if the request parameter .mets=true

bar.ark+=13960=t123.txt is the text file entry for the volume . The filename bar.ark:/13960/t123
underwent a Pairtree clean process, so filesystem-unsafe characters such as colons ' ' and slashes ' ' are replaced : /
with filesystem-safe characters.

bar.ark+=13960=t123.mets.xml will be present if the request parameter .mets=true

volume-rights.txt is a file at the top level. It contains the HTRC Data Protection Level for each volume.

ERROR.err is a file at the top level. It is present if the request encountered some errors and the detailed error
information is stored in this file. In this example, its presence is caused by the request for a non-existent volume
gon.000000

https://wiki.ucop.edu/display/Curation/PairTree
https://wiki.ucop.edu/display/Curation/PairTree
https://wiki.htrc.illinois.edu/display/COM/HTRC+Data+Protection+Level+Mapping
https://wiki.htrc.illinois.edu/display/COM/HTRC+Data+Protection+Level+Mapping

Retrieve
pages

concat=fal
se

pages.zip

 |-- foo.
001122/

 | |--
00000001.txt

 | |--
00000002.txt

 | |--
00000003.txt

 | |--
00000004.txt

 | |--
00000005.txt

 | \--
mets.xml

 |-- bar.
ark+=13960=t
123/

 | |--
00000001.txt

 | |--
00000002.txt

 | |--
00000003.txt

 | \--
mets.xml

 |--
volume-
rights.txt

 \--
ERROR.err

The Zip stream returned from the Data API for page retrieval with the request parameter is very concat=false
similar to that returned for volume retrieval with . The difference is that only pages requested for will concat=false
be included.

Retrieve
pages

concat=true

pages.zip

 |--
wordseq.txt

 \--
ERROR.err

Because the request parameter , the returned Zip stream is a "sequence of words" where the content concat=true
of all pages from all volumes is aggregated into a single text file entry named .wordseq.txt

ERROR.err is a file at the top level. It is present if the request encountered some errors and the detailed error
information is stored in this file. In this example, its presence is caused by the request for a non-existent volume
gon.000000

Note that there is no METS metadata returned because mixing METS metadata and page content into the word
sequence could potentially contaminate the information in the word sequence file.

Token count

(Deprecated)

level=volu
me

tokencount.
zip

 |-- foo.
001122.count

 |-- bar.
ark+=13960=t
123.count

 \--
ERROR.err

Because the request parameter , the returned Zip stream contains the token count of each volume level=volume
as an entry, and the name of the entry is the Pairtree cleaned volumeID with " " as the extension..count

 is a file at the top level. It is present if the request encountered some errors and the detailed error ERROR.err
information is stored in this file. In this example, its presence is caused by the request for a non-existent volume
gon.000000

Token count

(Deprecated)

level=page

tokencount.
zip

 |-- foo.
001122/

 | |--
00000001.
count

 | |--
00000002.
count

 | |--
00000003.
count

 | |--
00000004.
count

 | \--
00000005.
count

 |-- bar.
ark+=13960=t
123/

 | |--
00000001.
count

 | |--
00000002.
count

 | \--
00000003.
count

 \--
ERROR.err

Because the request parameter level= page, in the returned Zip stream, each volume is a directory whose entry
name is the Pairtree cleaned volumeID, and each page of the volume is an entry under the directory, and the name
of the page is the 8-digit zero-padded page sequence number followed by " " extension..count

 is a file at the top level. It is present if the request encountered some errors and the detailed error ERROR.err
information is stored in this file. In this example, its presence is caused by the request for a non-existent volume
gon.000000

Token Count Output Format and Sorting Order (Deprecated)

Each token count output entry is a list of tokens and number of occurrences within the aggregation. The token and its occurrence count is separated by a
space character (0x20), and each token-occurrence pair is a line and is separated from other pairs by a new line character (0x0A). However, if an
aggregation does not contain any texts (e.g. an empty page), that particular entry will be empty.

sortBy &
sortOrder

Token
Count
Output

Description

unspecified orange 1

banana 2

acorn 2

A-team 1

Xylophon
e 3

apple 1

coconut
1

if the parameter is not specified, the returned result does not guarantee any ordering of the token-occurrence sortBy
pairs, nor does it guarantee the same ordering of these pairs between any 2 runs with the exact same parameters

sortBy=to
ken&

sortOrder
=asc

A-team 1

Xylophon
e 3

acorn 2

apple 1

banana 2

coconut
1

orange 1

with ascending ordering on the tokens, the returned result is sorted using the UTF-8 value of the tokens in ascending
order. In this example, the tokens starting with capital letter "X" come before these starting with lower case letter "a".

sortBy=to
ken&

sortOrder
=desc

orange 1

coconut
1

banana 2

apple 1

acorn 2

Xylophon
e 3

A-team 1

this is the exact reverse of the case above

sortBy=co
unt&

sortOrder
=asc

A-team 1

apple 1

coconut
1

orange 1

acorn 2

banana 2

Xylophon
e 3

with ascending ordering on the occurrence count, the returned result is sorted using the count value in ascending order;
however, when multiple tokens have the same count, the order is determined by the ascending ordering of the tokens.

sortBy=co
unt&

sortOrder
=desc

Xylophon
e 3

banana 2

acorn 2

coconut
1

apple 1

A-team 1

this is the exact reverse of the above case, and specifically, when multiple tokens have the same count, the order is
determined by the descending ordering of the tokens.

Access Data API with JWT
While the Data API by itself does not enforce any security mechanism for authentication and/or authorization, it is can only be directly called using in JWT
Secure Mode while in a Capsule. The Capsules come with fixed JWT saved to the image that you will use to make API calls. The scripts are with the
tokens are saved at /home/dcuser/.htrc in each Capsule.

https://jwt.io/

	HTRC Data API Users Guide

